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1. Introduction. Although the somewhat esoteric appearance of additive problems involving sums
of mixed powers attracts a thinner audience than the more conventional versions of Waring’s problem,
these mixed problems have provided useful specimens for the testing and development of new technology
since the earliest days of the Hardy-Littlewood method (see, for example, [4], [7], [15]). Following early
investigations of Roth [8], [9], particular attention has focused on sums of ascending powers. When r
is a natural number, let H(r) denote the least number s such that all sufficiently large integers n are
represented in the form

n = xr1 + xr+1
2 + · · ·+ xr+s−1

s ,

with xi ∈ N (1 6 i 6 s). Also, let H+(r) denote the corresponding number s, where we instead merely
seek to represent almost all integers n, in the sense of natural density. Then Roth [8] established that
H+(2) 6 3, a conclusion that is transparently best possible, and subsequently (see [9]) provided the
upper bound H(2) 6 50. Improving on previous work of Vaughan [13], [14], Thanigasalam [10], [11],
[12] and Brüdern [1], [2], it has recently been shown by Ford [5], [6] that H(2) 6 14, and moreover Ford
also supplies the bounds H(3) 6 72 and, for large r, gives H(r) � r2 log r. Our purpose in this paper
is to bound H+(r) for the smallest value of r as yet unresolved.

Theorem 1. One has H+(3) 6 8.

The lower bound H+(3) > 5 is immediate from the observation that 1
3 + 1

4 + 1
5 + 1

6 < 1, and so the
conclusion of Theorem 1 is not astronomically far from the truth. Cursory computations indicate that
the methods of this paper yield a bound at least as strong as H+(4) 6 20. We note also that when r is
large, the methods of [6, §5] are easily adapted to give H+(r)� r3/2(log r)1/2. We establish Theorem 1
by means of the Hardy-Littlewood method, exploiting recent new estimates for mean values of smooth
Weyl sums (see, in particular, [3], [18], [21], [22], [24], [26]). These methods yield a lower bound for the
number of representations in the prescribed form of the expected size predicted by a formal application
of the circle method. When n is a natural number, let ν(n) denote the number of representations of n
in the shape

n = x3
1 + x4

2 + · · ·+ x10
8 , (1)

with xi ∈ N (1 6 i 6 8). Then we obtain the following theorem.

Theorem 2. There is a positive number τ satisfying the property that, for all but O(N(logN)−τ ) of

the natural numbers n with 1 6 n 6 N , one has ν(n)� n
1081
2520 .

We offer an outline of the proof of Theorem 2 in §2 below, wherein we also negotiate certain prelim-
inaries. Plainly, Theorem 1 is an immediate consequence of Theorem 2. Throughout, ε will denote a
sufficiently small positive number, and k will denote a positive integer, usually in the range 3 6 k 6 10.
We use � and � to denote Vinogradov’s well-known notation, with implicit constants depending at
most on ε and k, unless otherwise indicated. In an effort to simplify our analysis, we adopt the following
convention concerning the number ε. Whenever ε appears in a statement, either implicitly or explicitly,
we assert that for each ε > 0, the statement holds for sufficiently large values of the main parameter.
Note that the “value” of ε may consequently change from statement to statement, and hence also the
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dependence of implicit constants on ε. Finally, when y is a real number we write [y] for the greatest
integer not exceeding y.

The first author is grateful to the Department of Mathematics at the University of Michigan, Ann
Arbor, for its generous hospitality and excellent working conditions during the period in which this
paper was written.

2. Preliminaries to the main argument. In this section we describe the strategy underlying our
application of the circle method, and at the same time record auxiliary estimates for later use. As
mentioned in the introduction, we make fundamental use of smooth Weyl sums. In this context, when
X and Y are real numbers with 2 6 Y 6 X, define the set of Y -smooth numbers up to X by

A(X,Y ) = {n ∈ [1, X] ∩ Z : p|n and p prime implies that p 6 Y }.

As usual, we write e(z) for e2πiz, and when k is a natural number, we define

fk(α;X,Y ) =
∑

x∈A(X,Y )

e(αxk) and Fk(α;X) =
∑

X/2<x6X

e(αxk). (2)

Finally, when s is a positive real number, we write

U (k)
s (X,Y ) =

∫ 1

0

|fk(α;X,Y )|sdα.

We say that an exponent µ
(k)
s is permissible whenever the exponent has the property that, for each

ε > 0, there exists a positive number η = η(ε, s, k) such that whenever Y 6 Xη, then one has

U (k)
s (X,Y )�ε,s,k X

µ(k)
s +ε.

In the argument used to establish Theorem 2, we make use of the permissible exponents listed in
the table below. For k = 4, these exponents follow from the table in §2 of [3]. When k = 5, 6, 7, these
exponents are provided in the appendix of [21] (but see [22, §9] for k = 7 and s = 36). Finally, when
k = 8, 9, 10, these exponents are recorded in [22, §§10, 11, 12], on noting the remarks concerning process
Ds concluding §8 of that paper. Note that the exponent λs in these sources corresponds here to our
µ2s. We take δ = 10−10, and fix η to be a positive number, small enough so that for each s and k listed
in the table, whenever X is sufficiently large and Y 6 Xη, one has

U (k)
s (X,Y )� Xµ(k)

s +δ.

Table of permissible exponents.

k s µ
(k)
s k s µ

(k)
s k s µ

(k)
s

4 7.7 4.358530 7 14 8.541090 9 20 12.746344
4 12 8.000000 7 16 10.152633 9 22 14.410584
5 10 5.925080 7 36 29.000000 10 30 20.930371
5 18 13.000000 8 18 11.452911 10 32 22.753746
6 12 7.231564 8 20 13.128307 10 60 50.000000
6 14 8.850572 8 72 64.000000
6 24 18.000000

Consider next a positive number N sufficiently large in terms of η, and define

P3 = (N/4)1/3 and Pk = N1/k (4 6 k 6 10). (3)

When n is an integer with N/2 < n 6 N , we consider the number ν∗(n) of representations of n in the
form (1) with P3/2 < x1 6 P3 and xk−2 ∈ A(Pk, P

η
k ) (4 6 k 6 10). Plainly, one has ν(n) > ν∗(n) for

each such integer n. For the sake of concision, we modify the notation introduced in (2) by writing

F3(α) = F3(α;P3) and fk(α) = fk(α;Pk, P
η
k ) (4 6 k 6 10).
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Also, we write
F(α) = F3(α)f4(α) . . . f10(α), (4)

and when B ⊆ [0, 1), we define

ν∗(n;B) =

∫
B

F(α)e(−nα)dα. (5)

Then by orthogonality, one has ν∗(n) = ν∗(n; [0, 1)).
We estimate the integral (5) by means of the circle method. Our primary Hardy-Littlewood dissection

is defined as follows. Write L = (logN)δ, and denote by P the union of the major arcs

P(q, a) = {α ∈ [0, 1) : |α− a/q| 6 LN−1},

with 0 6 a 6 q 6 L and (a, q) = 1. Also, define p = [0, 1) \ P. The object of the first phase of our
analysis is to show that, for a suitable positive number τ ,∫

p

|F(α)|2dα� F(0)2N−1L−τ , (6)

whence, as a consequence of Bessel’s inequality,

∑
N/2<n6N

|ν∗(n; p)|2 6
∫
p

|F(α)|2dα� F(0)2N−1L−τ . (7)

This first objective we achieve in three steps. Define M to be the union of the arcs

M(q, a) = {α ∈ [0, 1) : |qα− a| 6 P
3/4
3 N−1},

with 0 6 a 6 q 6 P
3/4
3 and (a, q) = 1, and write m = [0, 1) \M. In §3, we estimate the minor arc

contribution ν∗(n;m) in mean square. Let N denote the union of the arcs

N(q, a) = {α ∈ [0, 1) : |qα− a| 6 Nδ−1},

with 0 6 a 6 q 6 Nδ and (a, q) = 1. Then in §5 we prune the set M down to N, establishing that
ν∗(n;M \ N) makes a negligible contribution to (7) in mean square. We prune down to the thin set
P in §6, thereby completing the proof of (7). Experts will recognise that the primary difficulty in our
analysis lies with the small number of classical Weyl sums present in (5). Thus, while the work in §§3
and 5 is essentially routine, the pruning process of §6 requires a technical lemma not available in the
literature. Fortunately, recent work of Brüdern and Wooley [3] (see also [22, Lemma 5.4]) provides the
inspiration to surmount the latter difficulty in §4.

In the second phase of our analysis, in §7, we employ major arc technology familiar to afficianados
of the new iterative methods in order to establish a lower bound of the shape

ν∗(n;P)� F(0)N−1, (8)

uniformly for N/2 < n 6 N . In combination with (7), this lower bound shows that

ν∗(n) = ν∗(n;P) + ν∗(n; p)� F(0)N−1(1 +O(L−τ/3))

for all but O(NL−τ/3) of the integers n with N/2 < n 6 N . The conclusion of Theorem 2 follows
immediately, whence also Theorem 1.

3. The minor arc contribution. Our goal in this section is to estimate ν∗(n;m) in mean square,
and this we achieve with a swift application of Hölder’s inequality. We remark that mixed mean values
incorporating efficient differencing processes of the type used by Ford [6] are not worthwhile in the
present context. Although we have developed more efficient processes that do improve the quality of
our bounds here, it transpires that such improvements leave no visible trace in our final analysis.
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k 4 5 6 7 8 9
sk 3.850 5.000 6.608 7.964 9.369 10.734

Define the numbers sk (4 6 k 6 9) as in the table above, and define s10 by means of s−1
4 +· · ·+s−1

10 = 1.
Then recalling (4) and applying Hölder’s inequality, we obtain∫

m

|F(α)|2dα 6
(

sup
α∈m
|F3(α)|

)2 10∏
k=4

(∫ 1

0

|fk(α)|2skdα
)1/sk

.

Suppose that 5 6 k 6 10. Then on writing tk = [sk + 1] and θk = tk − sk, we find that a second
application of Hölder’s inequality yields∫ 1

0

|fk(α)|2skdα 6
(∫ 1

0

|fk(α)|2tk−2dα
)θk(∫ 1

0

|fk(α)|2tkdα
)1−θk

.

Also, in view of the definition of m, it follows from [16, Lemma 1] that

sup
α∈m
|F3(α)| � P

3/4+ε
3 . (9)

Thus, if we write νk = (θkµ
(k)
2tk−2 + (1 − θk)µ

(k)
2tk

)/sk for 5 6 k 6 10, and suppose that each µ
(k)
s is a

permissible exponent, then we obtain∫
m

|F(α)|2dα� NεP
3/2
3 P

µ
(4)
7.7/3.85

4 P ν55 . . . P ν1010 .

On recalling (3) and the table of exponents from §2, therefore, a modicum of computation reveals that
with a real number φ exceeding 0.0023,∫

m

|F(α)|2dα� F(0)2N−1−φ. (10)

4. Preparations for pruning. Before initiating the first pruning process, we record some notation
and recall certain auxiliary estimates. Write

v3(β) =

∫ P3

P3/2

e(βγ3)dγ and vk(β) =

∫ Pk

0

e(βγk)dγ (k > 4). (11)

Also, when k > 2, define

Sk(q, a) =

q∑
r=1

e(ark/q),

and define the multiplicative function κk(q) on prime powers πl by taking

κk(πuk+v) =

{
kπ−u−1/2, when u > 0 and v = 1,

π−u−1, when u > 0 and 2 6 v 6 k.
(12)

Then by [17, Lemma 3], whenever a ∈ Z and q ∈ N satisfy (a, q) = 1, one has

q−1Sk(q, a)� κk(q) and q−1/2 6 κk(q)� q−1/k. (13)

Next define F ∗3 (α) for α ∈ [0, 1) by taking

F ∗3 (α) = q−1S3(q, a)v3(α− a/q) (14)

when α ∈M(q, a) ⊆M, and by taking this function to be zero otherwise. Then by [19, Theorem 4.1],

sup
α∈M

|F3(α)− F ∗3 (α)| � P
3/8+ε
3 . (15)

We note also that by applying partial integration to (11), it follows from (13) and (14) that whenever
α ∈M(q, a) ⊆M and (a, q) = 1, one has

F ∗3 (α)� κ3(q)P3(1 +N |α− a/q|)−1. (16)

Before describing our technical pruning lemma, we define an auxiliary set of major arcs. When
1 6 X 6 P3, let W(X) denote the union of the intervals

W(q, a;X) = {α ∈ [0, 1) : |qα− a| 6 XN−1},
with 0 6 a 6 q 6 X and (a, q) = 1.
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Lemma 1. Suppose that k > 4, 1 6 X 6 Pk and A > 1. Write t = [k/2], and take A to be a subset of
[1, Pk] ∩ Z. Define the function Υ(α) for α ∈W(X) by taking

Υ(α) = κ3(q)2(1 +N |α− a/q|)−A, (17)

when α ∈W(q, a;X) ⊆W(X). Then for each ε > 0,∫
W(X)

Υ(α)
∣∣∣∑
x∈A

e(αxk)
∣∣∣2tdα� XεP 2t

k N
−1.

Proof. We follow closely the argument of the proof of [22, Lemma 5.4], noting initially that the argument
leading to inequality (5.8) of that paper shows that∫

W(X)

Υ(α)
∣∣∣∑
x∈A

e(αxk)
∣∣∣2tdα� P 2t

k N
−1

∑
16q6X

κ3(q)2σ(q), (18)

where σ(q) =
∑
r|q rκk(r)2t. The function κk(r) is multiplicative with respect to r, and thus σ(q) is

likewise a multiplicative function of q. Further, the argument of the proof of [22, Lemma 5.4] provides
for each prime number p the upper bounds σ(p) 6 1 + k2tp−1 and σ(ph)� ph/k (h > 2). When k > 4,
therefore, we deduce from (12) that

κ3(p)2σ(p)� p−1,

κ3(p3u+1)2σ(p3u+1)� p−2u−1+(3u+1)/k � p−u−1+1/k (u > 1),

κ3(p3u+2)2σ(p3u+2)� p−2u−2+(3u+2)/k � p−u−1 (u > 0).

The multiplicative properties of σ(q) and κ3(q) thus ensure that for a suitable constant B depending
at most on k,

∑
16q6X

κ3(q)2σ(q) 6
∏
p6X

(
1 +

∞∑
h=1

κ3(ph)2σ(ph)
)
6
∏
p6X

(1 +Bp−1)� Xε.

The conclusion of the lemma now follows immediately from (18).

We also require a weak estimate of Weyl type for the generating function f10(α).

Lemma 2. For each α ∈M \N, one has |f10(α)| � P
1−δ/200
10 .

Proof. Suppose that α ∈ M \N. By Dirichlet’s approximation theorem, there exist a ∈ Z and q ∈ N
with (a, q) = 1, 1 6 q 6 N1−δ and |qα − a| 6 Nδ−1. But since α /∈ N, one necessarily has q > Nδ.

Thus, on applying [25, Lemma 3.1] with k = 10, M = P
3/4
10 and t = w = 30, we deduce that whenever

µ60 = 50 + ∆ is a permissible exponent, one has

f10(α)� qεP 1+ε
10

(
P∆

10(q−1 + 2N−1/4 + qN−1)
)1/(2t2)

+ P
3/4
10

� P 1+ε
10 (P∆

10N
−δ)1/1800.

But we find from the table in §2 that ∆ = 0 is admissible, and so |f10(α)| � P
1−δ/180+ε
10 . The conclusion

of the lemma follows immediately.

5. A wide set of major arcs. In this section we prune the major arcs M down to the set N, in
preparation for further pruning in the next section. We begin by replacing the generating function
F3(α), implicit in ν∗(n;M), by its approximation F ∗3 (α). In this context, define

F1(α) = F ∗3 (α)f4(α) . . . f10(α). (19)
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Lemma 3. One has ∫
M

|F(α)−F1(α)|2dα� F(0)2N−1−δ.

Proof. On recalling (4) and the values of sk from §3, it follows from Hölder’s inequality that

∫
M

|F(α)−F1(α)|2dα 6
(

sup
α∈M

|F3(α)− F ∗3 (α)|
)2 10∏

k=4

(∫ 1

0

|fk(α)|2skdα
)1/sk

.

A comparison of (9) and (15) thus reveals that the argument of §3 leading to (10) again applies, and
the conclusion of the lemma follows.

We next dispose of the contribution of the set of arcs M \N.

Lemma 4. One has ∫
M\N

|F1(α)|2dα� F(0)2N−1−δ/2000.

Proof. Recalling (19) and applying Hölder’s inequality, a trivial estimate for f9(α) yields

∫
M\N

|F1(α)|2dα 6
(

sup
α∈M\N

|f10(α)|
)2

P 2
9 J

2/3
1 J

1/18
2

8∏
k=5

I
1/tk
k , (20)

where

J1 =

∫
M

|F ∗3 (α)3f4(α)2|dα, J2 =

∫ 1

0

|f4(α)|12dα,

Ik =

∫ 1

0

|fk(α)|2tkdα (5 6 k 6 8),

and here we take t5 = 9, t6 = 12, t7 = 18, t8 = 36. On recalling the permissible exponents from the
table in §2, moreover, one has

J2 � P 8+ε
4 and Ik � P 2tk−k+ε

k (5 6 k 6 8). (21)

In order to estimate J1, we note that by (13) and (16), whenever α ∈ M(q, a) ⊆ M, one has
|F ∗3 (α)| � P3∆(α)1/3, where ∆(α) is the function defined for α ∈M by taking ∆(α) = (q+N |qα−a|)−1,
when α ∈M(q, a) ⊆M. Observe also that |f4(α)|2 =

∑
l∈Z ψ(l)e(lα), where ψ(l) denotes the number

of solutions of the equation z4
1 − z4

2 = l, with zi ∈ A(P4, P
η
4 ) (i = 1, 2). Plainly, one has ψ(0)� P4 and∑

l∈Z ψ(l) = f4(0)2 � P 2
4 , and so by [2, Lemma 2], it follows that

∫
M

|F ∗3 (α)3f4(α)2|dα� N

∫
M

∆(α)|f4(α)|2dα� Nε
(
P

3/4
3 P4 + P 2

4

)
.

On recalling Lemma 2, we therefore deduce from (20) and (21) that∫
M\N

|F1(α)|2dα� Nε−1F(0)2P
−δ/100
10 ,

and this suffices to establish the conclusion of the lemma.

6. Pruning. By wielding the technical pruning lemma prepared in §4, we are able to prune the set of
arcs N down to the thin set P in a single stroke.
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Lemma 5. One has ∫
N\P
|F1(α)|2dα� F(0)2N−1L−1/2.

Proof. Suppose that L 6 X 6 Nδ, and define V(X) = W(2X) \W(X), where W(X) is as defined in
§4. Then [20, Lemmata 7.2 and 8.5] show that

sup
α∈V(X)

|fk(α)| � PkX
−1/(2k+1) (4 6 k 6 10), (22)

the former lemma applying in the interval (logN)10000 6 X 6 Nδ, and the latter for (logN)δ 6 X 6
(logN)10000. Recalling (19) and applying Hölder’s inequality, we obtain∫

V(X)

|F1(α)|2dα 6 sup
α∈V(X)

|f6(α) . . . f10(α)|2J1/2
4 J

1/2
5 , (23)

where

Jk =

∫
W(2X)

|F ∗3 (α)2fk(α)4|dα (k = 4, 5).

But by (16), one has F ∗3 (α)2 � P 2
3 Υ(α), where Υ(α) is the function defined for α ∈W(X) as in (17).

Thus it follows from Lemma 1 that whenever L 6 X 6 Nδ, one has Jk � XεP 2
3P

4
kN
−1 (k = 4, 5). On

substituting the latter estimates into (23), and making use also of (22), we deduce that∫
V(X)

|F1(α)|2dα� F(0)2N−1X−1/2. (24)

In order to complete the proof of the lemma, we have merely to note that N \P is contained in the
union of the sets V(X) as X runs over the values 2lL with l > 0 and 2lL 6 Nδ. On summing over the
latter values of X, it follows from (24) that the desired conclusion does indeed hold.

Collecting together (10) with the conclusions of Lemmata 3, 4 and 5, we find that∫
p

|F(α)|2dα�
∫
m

|F(α)|2dα+

∫
M

|F(α)−F1(α)|2dα

+

∫
M\N

|F1(α)|2dα+

∫
N\P
|F1(α)|2dα

�F(0)2N−1L−1/2,

whence the desired estimate (6) follows immediately.

7. The main term. Before establishing the lower bound (8), we introduce some further notation.
Write cη for ρ(η−1), where ρ(t) is the Dickman function (see, for example, [19, §12.1]). For our purposes
here it suffices to note only that when η > 0 one has cη > 0. Next, when 4 6 k 6 10, define f∗k (α) for
α ∈ P by taking

f∗k (α) = cηq
−1Sk(q, a)vk(α− a/q), (25)

when α ∈ P(q, a) ⊆ P. As a consequence of [23, Lemma 8.5], one has

sup
α∈P
|fk(α)− f∗k (α)| � Pk(logN)−1/4. (26)

Also, from [19, Theorem 4.1], it follows that

sup
α∈P
|F3(α)− F ∗3 (α)| � L1+ε. (27)
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Lemma 6. One has ∫
P

F(α)e(−nα)dα� F(0)N−1.

Proof. We begin by replacing the exponential sums F3(α) and fk(α) by their approximations F ∗3 (α) and
f∗k (α). Write F∗(α) = F ∗3 (α)f∗4 (α) . . . f∗10(α). Then since the measure of P is O(L3N−1), on making
liberal use of trivial estimates for generating functions, one finds from (26) and (27) that∫

P

F(α)e(−nα)dα−
∫
P

F∗(α)e(−nα)dα� L3(logN)−1/4F(0)N−1

� F(0)(NL)−1. (28)

But on recalling (25) and (14), we have∫
P

F∗(α)e(−nα)dα = c7ηJ0(n)
∑

16q6L

A(q, n), (29)

where

J0(n) =

∫ L/N

−L/N

( 10∏
k=3

vk(β)
)
e(−nβ)dβ (30)

and

A(q, n) = q−8

q∑
a=1

(a,q)=1

( 10∏
k=3

Sk(q, a)
)
e(−na/q). (31)

We complete the singular integral J0(n) to obtain the new integral

J(n) =

∫ ∞
−∞

( 10∏
k=3

vk(β)
)
e(−nβ)dβ. (32)

On recalling (11), a partial integration yields the bounds

v3(β)� P3(1 +N |β|)−1 and vk(β)� Pk(1 +N |β|)−1/k (4 6 k 6 10).

On substituting these bounds into (30) and (32), we deduce that

J(n)− J0(n)� F(0)

∫ ∞
L/N

(1 +Nβ)−2dβ � F(0)N−1L−1. (33)

We may rewrite (32) in the form

J(n) =

∫ ∞
−∞

∫
B
e(β(γ3

1 + γ4
2 + · · ·+ γ10

8 − n))dγdβ,

where

B = [P3/2, P3]× [0, P4]× · · · × [0, P10].

When N/2 < n 6 N , therefore, one certainly has that

[(n/8)1/3, (n/4)1/3]× [0, n1/4]× · · · × [0, n1/10] ⊆ B,

and hence an application of Fourier’s integral formula rapidly establishes that

J(n)� n
1
3 +···+ 1

10−1 � F(0)N−1. (34)
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Next we turn our attention to the singular series, which we complete to obtain

S(n) =
∞∑
q=1

A(q, n).

Recalling first (13) and (31), we have A(q, n) � qκ3(q)κ4(q) . . . κ10(q), and in particular, by virtue of
(13), one has the upper bound A(q, n)� q−3/7. When π is a prime number and h = 1 or 2, moreover,
the formulae (12) ensure that A(πh, n) � π−3. But the standard theory of exponential sums shows
that A(q, n) is a multiplicative function of q (see, for example, [19, §2.6]). Thus it follows that whenever
π is a prime number and 0 < θ 6 1/35,

∞∑
h=1

(πh)θ|A(πh, n)| � π2θ−3 +

∞∑
h=3

πhθ−3h/7 � π−6/5. (35)

Consequently, there is a fixed positive number B with the property that∑
16q6Q

qθ|A(q, n)| 6
∏
p6Q

(1 +Bp−6/5)� 1,

whence ∑
q>L

|A(q, n)| 6
∑
q>L

(q/L)1/35|A(q, n)| � L−1/35.

Thus we arrive at the conclusion

S(n)−
∑

16q6L

A(q, n)� L−1/35. (36)

Next write

ωπ(n) =
∞∑
h=0

A(πh, n),

and observe that by (35), one has for each prime π that

ωπ(n)− 1� π−6/5. (37)

The multiplicative property of A(q, n) together with the latter estimate shows that we may rewrite S(n)
as an absolutely convergent product S(n) =

∏
π ωπ(n). We aim now to show that S(n)� 1, uniformly

in n. Assuming this inequality, it follows from (28), (29), (33), (34) and (36) that for N/2 < n 6 N ,
one has ∫

P

F(α)e(−nα)dα� (F(0)N−1 +O(F(0)(NL)−1))(1 +O(L−1/35)),

which yields the conclusion of the lemma.
In order to establish that S(n) � 1, we begin by noting that the proof of [19, Lemma 2.12] shows

that when h > 1, one has
h∑
l=0

A(πl, n) = π−7hΩ(πh, n),

where Ω(πh, n) denotes the number of incongruent solutions of the congruence

x3
1 + x4

2 + · · ·+ x10
8 ≡ n (mod πh). (38)

When π is not equal to 3 and h = 1, it follows from the Cauchy-Davenport theorem (see [19, Lemma
2.14]) that the congruence (38) is soluble with π - x1. When πh = 9, on the other hand, the latter
conclusion is easily verified by hand. Then the methods of [19, §2.6], in combination with (37), therefore
show that for a sufficiently large but fixed positive number C, one has

S(n)�
∏
π>C

(1− π−7/6)� 1,

uniformly in n. This completes the proof of the lemma.

In view of the discussion concluding §2, the proofs of Theorems 1 and 2 follow immediately from (6)
and the conclusion of Lemma 6.
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